**THE UNIVERSITY OF TEXAS AT DALLAS** 

## Motivation : Bias in Unconditional Diffusion Model

- Deep learning models trained on sensitive data often show demographic biases, raising fairness concerns, particularly with limited datasets.
- Diffusion models amplify bias<sup>[1]</sup> excel in image generation but challenging to use generated images in downstream tasks due to amplified biases.
- Proposed solution a novel yet simple technique, GAMMA-FACE to debias the attributes in the images generated by unconditional diffusion models.
- Utilized Gaussian Mixture Models (GMMs) to disentangle the attributes in the latent space of diffusion models.

| Quantitative Results |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                        |                                                                      |                                          |                                        |                                        |                                        |                                |                  |                            |                       |                    |                       |                   |                       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------|------------------|----------------------------|-----------------------|--------------------|-----------------------|-------------------|-----------------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FairFace                              |                                        |                                                                      |                                          |                                        |                                        |                                        |                                |                  |                            | FairFace              |                    |                       |                   |                       |
|                      | $A_t =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $=g \mid A_p$                         | = a, r                                 | $A_t =$                                                              | $= r \mid A_p$                           | =a,g                                   | $A_t =$                                | $= a \mid A_p$                         | = r, g                         |                  | $\overline{A_t = g \mid }$ | $A_p = a, r$          | $A_t = r \mid .$   | $A_p = a, g$          | $A_t = a \mid$    | $A_p = r, g$          |
| Method               | $\frac{\mathrm{B}(\downarrow)}{0.187}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{BA }(\downarrow)}{1.36}$ | $\frac{\text{Acc. }(\uparrow)}{81.67}$ | $\frac{B(\downarrow)}{0.237}$                                        | BA (↓)                                   | $\frac{\text{Acc. }(\uparrow)}{78.10}$ | $\frac{\mathrm{B}(\downarrow)}{0.112}$ | $\frac{\text{BA }(\downarrow)}{1.502}$ | Acc. $(\uparrow)$              | Method           | BPC (†)                    | KL $(\downarrow)$     | BPC (†)            | KL $(\downarrow)$     | BPC (†)           | KL $(\downarrow)$     |
| [50]<br>[8]<br>Ours  | 0.142<br>0.169<br><b>0.088</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.38<br>1.53<br><b>1.29</b>           | 84.14<br>82.28<br>86.5                 | 0.163<br>0.218<br><b>0.102</b>                                       | $     1.393 \\     1.781 \\     1.36   $ | 79.3<br>75.5<br><b>80.23</b>           | <b>0.097</b><br>0.130<br>0.128         | 1.62<br>1.62<br>1.510                  | 80.13<br>76.51<br><b>81.00</b> | Baseline<br>Ours | 0<br><b>0.085</b>          | 0.886<br><b>0.801</b> | 0<br><b>0.118</b>  | 0.798<br><b>0.740</b> | 0<br><b>0.454</b> | <b>0.769</b><br>0.783 |
|                      | ${ m FFHQ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                        |                                                                      |                                          |                                        |                                        |                                        | FFHQ                           |                  |                            |                       |                    |                       |                   |                       |
|                      | $\frac{A_t = s \mid A_p = a, g}{\sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \frac{A_t = gl \mid A_p = a, g}{\sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \frac{a}{\sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \frac{a}{\sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \frac{a}{\sum_{t \in \mathcal{X}} f(t) = \sum_{t \in \mathcal{X}} f(t) = \frac{a}{\sum_{t \in \mathcal{X} f(t)} = \frac{a}{\sum_{t \in \mathcal{X}} f(t) = \frac{a}{\sum_{t \in \mathcal{X} f(t)} = \frac{a}{\sum_{t \in X$ |                                       |                                        |                                                                      |                                          |                                        |                                        | $\overline{A_t = s \mid}$              | $A_p = a, g$                   | $A_t = h \mid$   | $A_p = a, g$               | $A_t = gl \mid$       | $A_p = a, g$       |                       |                   |                       |
| [34]                 | $\frac{B(\downarrow)}{0.015}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BA (↓)<br>1.48                        | Acc. $(\uparrow)$<br>91.68             | $\begin{array}{c} B(\downarrow)\\ \hline 0.221\\ \hline \end{array}$ | BA (↓)<br>1.787                          | Acc. $(\uparrow)$<br>84.03             | $\frac{B(\downarrow)}{0.028}$          | BA (↓)<br>0.995                        | Acc. $(\uparrow)$<br>96.50     | Method           | BPC $(\uparrow)$           | KL $(\downarrow)$     | BPC $(\uparrow)$   | KL $(\downarrow)$     | BPC $(\uparrow)$  | KL $(\downarrow)$     |
| [50]<br>[8]<br>Ours  | 0.0064<br>0.019<br><b>0.0056</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.61 \\ 1.77 \\ 1.52$                | 93.16<br>91.58<br><b>94.84</b>         | 0.153<br>0.192<br><b>0.146</b>                                       | 1.798<br>1.84<br><b>1.756</b>            | <b>88.87</b><br>82.11<br>82.81         | 0.031<br>0.040<br><b>0.0208</b>        | 1.008<br>1.156<br><b>0.987</b>         | 97.29<br>96.10<br><b>98.70</b> | Baseline<br>Ours | 0<br><b>0.673</b>          | 0.782<br><b>0.698</b> | 0<br><b>0.4244</b> | 0.95<br><b>0.912</b>  | 0<br><b>0.128</b> | 1.814<br><b>0.918</b> |

Bias evaluation metrics: Bias (B), Bias Amplification (BA), Overall accuracy (Acc.), Bias Performance Coefficient (BPC) and KL divergence (KL)

|                         |                                 |                             | Fai                            | rFace                           |                               |                                | FFHQ                             |                               |                                |                                |                              |                                |                         |                                  |
|-------------------------|---------------------------------|-----------------------------|--------------------------------|---------------------------------|-------------------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------|----------------------------------|
|                         | $\overline{A_t} = g$            | $g \mid A_p$                | = a, r                         | $A_t = t$                       | $r \mid A_p =$                | = a, g                         | $A_t = $                         | $s \mid A_p =$                | = a, g                         | $A_t = $                       | $h \mid A_p$                 | = a, g                         |                         | $A_t = g \mid $                  |
| %Gen+%Org               | В                               | BA                          | Acc.                           | В                               | BA                            | Acc.                           | В                                | BA                            | Acc.                           | В                              | BA                           | Acc.                           | Gen+%Org                | g BPC                            |
| $100 \\ 70+30 \\ 30+70$ | 0.117<br>0.1098<br><b>0.089</b> | 1.59<br>1.41<br><b>1.33</b> | 83.25<br>82.25<br><b>86.21</b> | 0.125<br><b>0.0956</b><br>0.104 | 1.72<br>1.541<br><b>1.354</b> | 72.83<br>71.30<br><b>77.93</b> | 0.0204<br>0.119<br><b>0.0044</b> | 1.928<br>1.75<br><b>1.513</b> | 93.16<br>92.18<br><b>93.85</b> | 0.181<br>0.216<br><b>0.152</b> | 1.98<br>1.824<br><b>1.76</b> | 76.58<br>77.98<br><b>81.19</b> | $100 \\ 70+30 \\ 30+70$ | -0.266<br>-0.204<br><b>0.117</b> |

Basudha Pal<sup>1\*</sup>, Arunkumar Kannan<sup>1\*</sup>, Ram Prabhakar<sup>1</sup>, Alice J.O'Toole<sup>2</sup>, and Rama Chellappa<sup>1</sup> <sup>1</sup> Johns Hopkins University <sup>2</sup> The University of Texas at Dallas \* Indicates equal contributior













FairFace  $A_p = a, r \ A_t = r$ 

KL

BPC

1.01-0.093 1.23-0.0310.978 0.055

The effect of different mixing ratios (Generated + Original) on FairFace and FFHQ

# GAMMA-FACE: GAussian Mixture Models Amend Diffusion Models for Bias Mitigation in Face Images



Pictorial analogy depicting bias in protected attributes for a same target downstream task

|               | m FFHQ           |              |                    |              |  |  |  |  |  |  |
|---------------|------------------|--------------|--------------------|--------------|--|--|--|--|--|--|
| $ A_p = a, g$ | $g A_t = s \mid$ | $A_p = a, g$ | $A_t = h \mid A_t$ | $A_p = a, g$ |  |  |  |  |  |  |
| KL            | BPC              | KL           | BPC                | KL           |  |  |  |  |  |  |
| 0.989         | -0.243           | 0.95         | -0.176             | 1.27         |  |  |  |  |  |  |
| 0.85          | -0.201           | 0.852        | -0.376             | 1.14         |  |  |  |  |  |  |
| 0.913         | 0.0056           | 0.787        | -0.0023            | 1.05         |  |  |  |  |  |  |
|               |                  |              |                    |              |  |  |  |  |  |  |



# Qualitative Results



Face images generated by GAMMA-Face after localizing the image attributes in the latent space of the DDPM for Left: FFHQ and Right: FairFace datasets.

### Acknowledgements

This research is based upon work supported in part by the Office of the Director of National [1] Perera, M.V. et.al., Analyzing bias in diffusion-based face generation models. IEEE IJCB 2023 [34] Ramaswamy, V.V et.al. Fair attribute classification through latent space de-biasing. IEEE/CVF CVPR 2021 Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via [2022-21102100005]. The views and conclusions contained herein are those of the authors and should [50] Zhang, F. et. al Distributionally Generative Augmentation for Fair Facial Attribute Classification. IEEE/CVF CVPR 2024 [8] Dhar, P. et. al. Pass: protected attribute suppression system for mitigating bias in face recognition. IEEE/CVF ICCV 2021 not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The US. Government is authorized to reproduce and Webpage: https://bas-2k.github.io/gamma-face/ distribute reprints for governmental purposes notwithstanding any copyright annotation therein.







### **Our Approach: GAMMA-Face**

### References