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ABSTRACT RESULTS

* Proposed a novel and easily implemented analysis approach aimed at  Partial Dependence (PD) Analysis:
explaining the variation in functional connectivity of the brain by
integrating local structural factors such as anatomical morphology
summaries, voxel intensity, diffusion-weighted information, and

Visualize the effect of a single structural covariate on the predicted
outcome of functional connectivity:

geographic distance 1 a generalized additive model (GAM) PD(X,) = Ex , [f(Xp, X )]
framework. X
* Our approach can be performed 1n template space, as well as subject _ ! | |
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(vertex) space, thereby accounting for inter-subject differences.
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Multi-modal Structural Brain Features

Fig 2. Partial dependence plots of structural features against functional connectivity
values for resting state in template space.

Discriminability Analysis:
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Fig 1. Integration of multi-modal structural brain features with functional connectivity RN
data for discriminability analysis. et |
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resting state in Top: template and Bottom: vertex (subject) spaces.

* «a —1ntercept term
* f.(-) —penalized regression B spline functions on the structural covariates
* €g —error term

» Utilized the spline coefficients of structural covariate from partial
dependence analysis ( f,, ), model summary statistics, GAM
predictions and Pearson correlations to compute the distance d(-)

S in discriminability analysis, thereby combining PD analysis to
L L L L [3d(Zp,i» Zp.i) < d(Zp.i» Zq.5)} derive the 04,94 Scores shown in Fig 3.
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P — sample size Z.. — vector of measurement values * Higher values of 4 indicate greater repeatability of measurements.

T —number of repeated measurements d(-) — distance metric

DATA CONCLUSION
* Human Connectome Project (HCP) — 900 subject release * Introduced a unique way for accommodating inter-individual
* Data preprocessed through HCP preprocessing pipeline variability—a crucial aspect frequently neglected in traditional
* Atlas space: Destrieux atlas with 148 brain ROIs analyses.
* Vertex space: vertices sampled through spatial stratified sampling < Downstream task highlights our framework’s efficacy 1n
defined by the atlas 1in subject space discriminating variances within brain connectivity configurations.
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