GAMing THE BRAIN: INVESTIGATING THE CROSS-MODAL RELATIONSHIPS BETWEEN FUNCTIONAL CONNECTIVITY AND STRUCTURAL FEATURES USING GENERALIZED ADDITIVE MODELS

Arunkumar Kannan^{*}, Brian Caffo[‡], Archana Venkataraman[†]

* Department of Electrical and Computer Engineering, Johns Hopkins University, USA [‡] Department of Biostatistics, Johns Hopkins University, USA [†] Department of Electrical and Computer Engineering, Boston University, USA

ABSTRACT

• Proposed a novel and easily implemented analysis approach aimed at explaining the variation in functional connectivity of the brain by integrating local structural factors such as anatomical morphology summaries, voxel intensity, diffusion-weighted information, and geographic distance in a generalized additive model (GAM) framework.

RESULTS

Partial Dependence (PD) Analysis:

Visualize the effect of a single structural covariate on the predicted outcome of functional connectivity:

```
PD(X_k) = E_{X_{\sim k}}[f(X_k, X_{\sim k})]
```

• Our approach can be performed in template space, as well as subject (vertex) space, thereby accounting for inter-subject differences.

METHODS

Fig 2. Partial dependence plots of structural features against functional connectivity values for resting state in template space.

Discriminability Analysis:

Fig 1. Integration of multi-modal structural brain features with functional connectivity data for discriminability analysis.

 $\mathbf{X}_{s}(i,j) = \alpha + f_{1}(\text{Diffusion}(i,j)) + f_{2}(\text{Morphology}(i,j))$ + $f_3(\text{Distance}(i, j)) + f_4(\text{Intensity}(i, j)) + \epsilon_s(i, j).$

- α intercept term
- $f_n(\cdot)$ penalized regression B spline functions on the structural covariates
- ϵ_s error term

Fig 3. Discriminability analysis comparing MZ, DZ, SIB, and NR individuals for resting state in **Top**: template and **Bottom**: vertex (subject) spaces.

• Utilized the spline coefficients of structural covariate from partial dependence analysis (f_n) , model summary statistics, GAM predictions and Pearson correlations to compute the distance $d(\cdot)$ in discriminability analysis, thereby combining PD analysis to

